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Polylogarithms and Riemann’sz function
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Riemann’sz function has been important in statistical mechanics for many years, especially for the under-
standing of Bose-Einstein condensation. Polylogarithms can yield values of Riemann’sz function in a special
limit. Recently these polylogarithm functions have unified the statistical mechanics of ideal gases. Our par-
ticular concern is obtaining the values of Riemann’sz function of negative order suggested by a physical
application of polylogs. We find that there is an elementary way of obtaining them, which also provides an
insight into the nature of the values of Riemann’sz function. It relies on two properties of polylogs—the
recurrence and duplication relations. The relevance of the limit process in the statistical thermodynamics is
described.@S1063-651X~97!01510-9#

PACS number~s!: 05.90.1m, 02.90.1p
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I. INTRODUCTION

Riemann’sz function perhaps first appeared in statistic
mechanics in 1900 in Planck’s theory of the blackbody
diation and then in 1912 in Debye’s theory of the spec
heats of solids@1#. Subsequently, this function has played
important role in the statistical theory of the ideal Bose g
especially for the understanding of Bose-Einstein conden
tion ~BEC! @2#. More recently, this function together with th
Mellin transform has become a powerful tool for the analy
of the thermodynamic potentials@3,4#. It would be no sur-
prise to find fruitful applications of Riemann’sz function in
other areas of today’s theoretical physics@5#.

Recently it was found that the statistical thermodynam
of ideal gases can be given a unified picture through polyl
defined in terms of the fugacityz and dimensionsd @6#.
There is richness that this unified picture reveals, such as
anomalous physics in null dimension@7#, the Fermi-Bose
reflection ind>3 @8#, and the Fermi-Bose equivalence ind
52 @9#. These physical results are consequences of s
special properties of polylogs. It has been long known tha
polylog of integral order becomes Riemann’sz function of
the same order when its argument attains unity@10#. Thus
Riemann’sz function can enter into the unified theory of th
statistical thermodynamics via the polylogs quite natura
Interestingly, we find that this formulation shows anoth
way of evaluating Riemann’sz function, which is presented
in this work.

The classical theory of polylogs begins with Euler’s dilo
and Landen’s trilog, and extends to higher order polylo
such as the quadrilog. In physical applications the order
polylog is related to physical dimensionsd. Thus polylogs of
integral order lower than the dilog have been conceiv
such as the nil-log and the monolog for the physics ind
50 and 2 @6#. There have been suggestions that nega
dimensions can be of theoretical interest@11#. They require
the polylogs of still lower orders than the nil-log, departin
from the direction of the classical theory of polylogs. Wh
we find is that in these circumstances there exists eve
simpler relationship between the polylogs and Riemannz
function. We can use this relationship to evaluate Rieman
z function very simply, perhaps more simply than by mo
561063-651X/97/56~4!/3909~4!/$10.00
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standard methods. It also lends an interesting insight into
nature of the values of Riemann’sz function.

II. POLYLOGS AND THEIR PROPERTIES

To show their relationship to Riemann’sz function, we
shall introduce a convenient integral representation for po
logs Lis(z) of complex numberss andz @6#, defined by

Li s~z!5
z

G~s!
E

0

1

@ log~1/t !#s21
dt

12zt
, Im t50, ~1!

whenever this integral converges, i.e., Res.0, Rez,1, and
elsewhere by analytic continuation. It is understood t
log(1/t) has its principal value. Evidently there is a bran
cut fromz51 to `. Also if s52, the standard expression fo
the dilog is recovered@10#. The above equation~1! bears
resemblance to an integral representation for Riemannz
function z(s) of a complex numbers @12#.

We shall now state a few useful properties for our p
poses which follow directly from Eq.~1!.

~a! Li s(z51)5z(s).
~b! If s5n52,3,4, . . . , Lin(z) are classical polylogs

known, respectively, as the dilog, trilog, quadrilog, e
~Throughout this work we shall reserven to denote real in-
tegers, both positive and negative.!

~c! limz→0z21 Li s(z)51. There is a trivial fixed point at
the origin.

~d! Recurrence relation

z
d

dz
Li s11~z!5Li s~z!.

~e! Duplication relation

Li s~z!1Li s~2z!5212sLi s~z2!.

If s5n52 and 3, one recovers Euler’s formula for the dilo
and Landen’s for the trilog, respectively@10#.

~f! uLi s(z521)u,` since the function is analytic atz5
21.

~g! If uzu,1 ands5n>1 ~also uzu51 included ifn>2!,
3909 © 1997 The American Physical Society
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Lin~z!5 (
k51

`

zk/kn.

~h!

Lin~1!5 H z~n! if .1
` if n<1.

The property~h! is the basis for the existence of BEC
d>3 and for the absence ifd<2 @1#. It should be noted tha
if s5n.1, there is thus no difference in Lin(1) between the
one given in~h! and the other given in~a!. If n,1, however,
by Lin(1) we shall mean simply the integral~1!, which then
becomes undefined as shown above because of the sing
ity in Li n(z) at z51. However, one can obtain Lis(1), s5
2m, m.0, by analytic continuation in the manner ofz(s
52m,0). To denote this latter case— and to avoid t
possible confusion we shall usez(s) in place of Lis(1)
whenever analytic continuation is implied. Sincez521 is
not a singular point of Lis(z), this kind of distinction need
not be made for Lis(21).

III. POLYLOGS OF NEGATIVE INTEGRAL ORDER:
POLYPSEUDOLOGS

If z51 in the duplication relation~e!, we obtain together
with ~a!,

z~s!5~212s21!21Li s~21!. ~2!

Thus it is possible to evaluatez(s) if Li s(z) can be given at
z521. If s5n52, for example, we recover the familia
result z(2)5p2/6, given that Li2(21)52p2/12. See the
Appendix for Lin(21), n52,4,6, . . . , obtained purely from
the inversion property of classical polylogs. Hence it is
ementary to evaluatez(s5n) if n52,4,6, . . . . To evaluate
z(s5n) whenn,1, we need to know first the form of Lis(z)
for s5n51,0,21,22, etc. These lower order polylogs ca
be obtained from any one of the higher order ones thro
repeated differentiation. See the recurrence relation~d!.
Hence it is sufficient to know one polylog function in close
form. By settings5n51 in Eq. ~1!, we immediately obtain
the form for the monolog,

Li 1~z!52 log~12z!, zÞ1. ~3!

By applying the recurrence relation to the above form of
monolog and repeating it over and again, we have obtai
the lower order polylogs given below to ordern528:

Li0~z!5z/~12z!521/2, ~4!

Li21~z!5z/~12z!2521/4,

Li22~z!5z~11z!/~12z!350,

Li23~z!5z~114z1z2!/~12z!451/8,

Li24~z!5z~11z!~1110z1z2!/~12z!550,

Li25~z!5z~1126z166z2126z31z4!/~12z!6521/4,
lar-

-

h

e
d

Li26~z!5z~11z!~1156z1246z2156z31z4!/~12z!750,

Li27~z!5z~11120z11191z212416z3

11191z41120z51z6!/~12z!8

517/16,

Li28~z!5z~11z!~11246z14047z2111572z314047z4

1246z51z6!/~12z!9

50.

The numerical values given on the right-hand side of E
~4! are the polylogs evaluated atz521. There seems to be
no general closed form expression recognizable from th
lower order polylogs. One can, however, obtain the poly
of any desired lower order. Thus our results may perhaps
considered all but complete. These polylogs of ordern50,
21,22, . . . have shed log character. We might call the
polypseudologs, e.g., Li22(z) the dipseudolog. This distinc
tion will be found useful.

We can easily verify that these polypseudologs sati
several important functional properties of polylogs stated
Sec. II ~i! The recurrence relation~d! is satisfied.~ii ! The
duplication relation~e! is satisfied.~iii ! They are finite atz
521. See ~f!. ~iv! If uzu,1, the expansions of polyp
seudologs are also given by~g!. Hence the conditions5n
>1 given therein may be relaxed tos5n. In addition, the
polypseudologs Li2n(z), n.0 show the following proper-
ties.~v! They have a pole of ordern11 atz51. See~h!. ~vi!
They are factorable byz @see~c!# and also by (z11) if n is
an even number.~vii ! The numerical coefficients add up t
n!. ~viii ! Evidently Li2n(21)50 if n52,4,6, . . . , and
some numbers relatable to Bernoulli’s numbers ifn
51,3,5, . . . . These results may be used to obtain the val
of Riemann’sz functionz(s5n), n,1 to any desired lower
order.

IV. REIMANN’S z FUNCTION

We shall first consider one or two special cases. Ifs→1
in Eq. ~2!,

z~s→1!5 lim
s→1

~212s21!21Li 1~21!. ~5!

From Eq. ~3!, Li1(21)52 log 2. Also, (212s21)→2(s
21)log2 ass→1. Hencez(s→1)51/(s21), s→1, a well-
known result. Ifs5 1

2 in Eq. ~2!,

z~ 1
2 !5~&11!Li1/2~21!521.460 . . . , ~6!

where by ~g! Li1/2(21)52111/&21/)1 . . . 5
20.6048 . . . , aslow but converging series@13,14#. This re-
sults, Eq.~6!, cannot be obtained by the reflection formula
Riemann@12#.

From Eq.~2! we see that the coefficient standing befo
Li s(21) is always finite if s is a negative real number
Hence from Eq.~4! we obtain at once that

z~22m!50, m51,2, . . . . ~7!
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56 3911POLYLOGARITHMS AND RIEMANN’S z FUNCTION
For the others we can evaluate one by one. By using Eq~4!
in Eq. ~2!, we obtain at oncez(0)52 1

2 , z(21)52 1
12 ,

z(23)5 1
120, z(25)52 1

252, z(27)5 1
240, etc. According

to Titchmarsh’s book@15#, z(22m)50 and z(122m)5
(21)mBm /(2m), m51,2, . . . , whereBm are the Bernoulli
numbers, e.g.,B15 1

6 , B25 1
30 , B35 1

42 , B45 1
30 , B55 5

66 , etc.
Insofar as we have determined, we recover the value
Riemann’sz function very simply.

Observe the remarkable difference between the
classes of numbers,z(n), n521,23,25, . . . and n
52,4,6, . . . . Theformer are rational numbers, whereas t
latter are not, containing even powers ofp. This difference
can be traced to polypseudologs having lost log character
polylogs retaining it. Also see the Appendix for the source
p.

V. CONCLUDING REMARKS

Riemann’sz function of a negative number is not ord
nary, being defined only through analytic continuation. T
condition no doubt limits the number of possible avenues
approach to it. As far as we know, there is only one dir
method of obtaining the values ofz(n,0), given in the
literature. It is by applying Cauchy’s theorem of residues
Riemann’s integral representation of Hurwitz’s generalizez
function @12,15#. Although not as general, our method
solution by comparison is elementary. It relies on two ba
properties of polylogs—the recurrence and duplication re
tions. Polylogs have two independent parameters and sp
values of polylogs are obtained in certain limit proces
peculiar to polylogs, one of which corresponds to Rieman
z function.

We have alluded that ifsi<s051, the order of two pos-
sible limiting processes in polylogs~s→si and z→1! may
not be exchanged. We can illustrate the difference thro
the following examples. Consider Lis(z) taken in two differ-
ent orders ofs andz, whensi51 and 0:

lim
s→1

lim
z→1

Li s~z!5z~s→1!51/~s21!, s→1 ~8a!

but

lim
z→1

lim
s→1

Li s~z!52 log~12z!, z→1. ~8b!

Also,

lim
s→0

lim
z→1

Li s~z!5z~0!52 1
2 , ~9a!

but

lim
z→1

lim
s→0

Li s~z!51/~12z!, z→1. ~9b!

In both cases we obtain quite different results depending
the order of limits taken. This difference extends to all low
order polylogs~i.e., polypseudologs! since Lis(z), s5n5
21,22, . . . , all have poles of order2n11 at z51,
whereasz(n) has been found finite. In thes-z plane, there is
a line of singularity fors5n<1 at z51.

This difference in the limit process is important to th
statistical thermodynamics, formulated in6Lid/2(6z), re-
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spectively, for the massive Bose and Fermi gases, whez
denotes the fugacity andd the number of physical dimen
sions. One finds in the Bose gas in lower dimensions a c
dition equivalent to taking thed/2→1 limit first. If z→1,
then the divergence of Lid/2(z51), d<2, implies that BEC
does not occur in lower dimensions. But for the Fermi g
z51 is not a singular point of2Lid/2(2z). Hence the two
limits may be exchanged harmlessly, indicating the regu
ness of the Fermi thermodynamics. In higher dimensio
where there are no divergent singular points, these gase
z51 have a special significance, being a source of reflec
symmetry. At this point the chemical potentials vanish a
both gases~excluding kinematical factors! have the same
universal entropy, a constant made up of Riemann’sz func-
tion. When the chemical potential of a gas vanishes, it
plies of course that the gas has no control over the flow
particles when in contact with a particle reservoir. The
fundamental properties of the ideal gases are manifeste
Riemann’sz function, reached through the special limits
polylogs.
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APPENDIX : EVALUATION OF Li n„21…

FROM THE INVERSION RELATION

There are only two general relations known for polylog
the duplication and inversion formulas, the former given b
fore @see~e!# and the latter to be given below. It is possible
obtain the values of Lin(21), n52,4, . . . from the inver-
sion formula, hence purely from properties of classical po
logs. To our knowledge, these values are ordinarily obtai
from Riemann’sz function through~a! and Eq.~2!, hence
indirectly. See p. 188 of Lewin’s book@10#.

The inversion relation is known—it is not difficult to es
tablish it using the integral representation~1!. Instead of
writing down a general form~see Lewin’s book@10# or Ref.
@6#!, it will suffice for our purpose to express it as follows

Lin11~21/z!5~21!nLin11~2z!1~21!nan11/G~n12!

1Kn11~a!, n51,2, . . . ~A1!

where a5 logz and Kn11 is a polynomial ina in which
Lin(21), Lin22(21), . . . are its coefficients. The first few
are listed below:

K252Li2~21!, ~A2a!

K3522aLi2~21!, ~A2b!

K452@Li4~21!1~a2/2!Li2~21!#, ~A2c!

K5522@aLi4~21!1~a3/3! !Li2~21!#, ~A2d!
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K652@Li6~21!1~a2/2!Li4~21!1~a4/4! !Li2~21!#,
~A2e!

K7522@aLi6~21!1~a3/3! !Li4~21!1~a5/5! !Li2~21!#,
~A2f!

etc. Observe that ifz521 and n52,4,6, . . . ~i.e., even
numbers!, Eq. ~A1! becomes

an11/G~n12!1Kn11~a!50, ~A3!

where nowa(z521)5 ip. If n52, we havea3/3!1K3
5a3/3!22aLi2(21)50. Hence Li2(21)52p2/12 and
z(2)5p2/6 by Eq.~2!.

If n54, we havea5/5!1K550. Hence using Eq.~A2d!
we find that Li4(21)527p4/6!, recoveringz(4)5p4/90.
Similarly if n56, we obtain Li6(21)5231p6/7!6, recov-
ering z(6)5p6/945. In this way it is possible to obtain an
desired values of Lin(21) and hence alsoz(n), n
52,4,6, . . . directly from the two general properties of poly
logs. Also observe that the source ofp in z(n), n
52,4,6, . . . is log(z521). It is interesting to note that we
can obtain in this way Riemann’sz function of only positive
even integral order.
. R
.

er

.

In the classical theory of polylogs the values of Li2n
(21), n51,2, . . . , arealso obtained by combining the in
version relation with the duplication relation. See pp. 1
and 173 of Lewin’s book@10#. As a result, the ease an
transparency of our approach are not easily seen, whic
based on the inversion property alone.

Perhaps the simplest method of obtaining the values
z(2n), n51,2, . . . is thefollowing one, evidently due to
Euler @16#. Since the zeros of sinx are x56kp,
k50,1,2, . . . one canwrite

sinx5 (
m50

`

~2 !mx2m11/~2m11!! 5x)
k51

` F12S x

kp D 2G .
~A4!

If the coefficients ofx2m11, m>1 are now equated, the va
ues ofz(2m) follow immediately. It is certainly much sim-
pler than the standard method of obtaining them by cont
integration @17#. More generally one can obtainz(n), n
.1, by Riemann’s self-reflection formula sincez(12n) can
be evaluated through the Hurwitz function@12,15#.
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